GGSA: A Grouping Gravitational Search Algorithm for data clustering
نویسندگان
چکیده
Gravitational Search Algorithm (GSA) is a stochastic population-based metaheuristic designed for solving continuous optimization problems. It has a flexible and well-balanced mechanism for enhancing exploration and exploitation abilities. In this paper, we adapt the structure of GSA for solving the data clustering problems, the process of grouping data into clusters such that the data in each cluster share a high degree of similarity while being very dissimilar to data from other clusters. The proposed algorithm, which is called Grouping GSA (GGSA), differs from the standard GSA in two important aspects. First, a special encoding scheme, called grouping encoding, is used in order to make the relevant structures of clustering problems become parts of solutions. Second, given the encoding, special GSA updating equations suitable for the solutions with grouping encoding are used. The performance of the proposed algorithm is evaluated through several benchmark datasets from the well-known UCI Machine Learning Repository. Its Engineering Applications of Artificial Intelligence 2014; 36:114–121. performance is compared with the standard GSA, the Artificial Bee Colony (ABC), the Particle Swarm Optimization (PSO), the Firefly Algorithm (FA), and nine other well-known classical classification techniques from the literature. The simulation results indicate that GGSA can effectively be used for multivariate data clustering.
منابع مشابه
FUZZY GRAVITATIONAL SEARCH ALGORITHM AN APPROACH FOR DATA MINING
The concept of intelligently controlling the search process of gravitational search algorithm (GSA) is introduced to develop a novel data mining technique. The proposed method is called fuzzy GSA miner (FGSA-miner). At first a fuzzy controller is designed for adaptively controlling the gravitational coefficient and the number of effective objects, as two important parameters which play major ro...
متن کاملA New Method for Clustering Wireless Sensor Networks to Improve the Energy Consumption
Clustering is an effective approach for managing nodes in Wireless Sensor Network (WSN). A new method of clustering mechanism with using Binary Gravitational Search Algorithm (BGSA) in WSN, is proposed in this paper to improve the energy consumption of the sensor nodes. Reducing the energy consumption of sensors in WSNs is the objective of this paper that is through selecting the sub optimum se...
متن کاملGravitational Search Algorithm to Solve the K-of-N Lifetime Problem in Two-Tiered WSNs
Wireless Sensor Networks (WSNs) are networks of autonomous nodes used for monitoring an environment. In designing WSNs, one of the main issues is limited energy source for each sensor node. Hence, offering ways to optimize energy consumption in WSNs which eventually increases the network lifetime is strongly felt. Gravitational Search Algorithm (GSA) is a novel stochastic population-based meta-...
متن کاملA Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...
متن کاملAn improved opposition-based Crow Search Algorithm for Data Clustering
Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 36 شماره
صفحات -
تاریخ انتشار 2014